
Lip-reading from images

Massimiliano Baldo
massimiliano.baldo@studenti.unipd.it

Cristiano Panighel
cristiano.panighel@studenti.unipd.it

Davide Bassan
davide.bassan.1@studenti.unipd.it

https://github.com/davidebassan/project-vcs

Abstract

Lip reading is the method of visualizing the lip move-
ments of a speaker and identifying the spoken speech. Re-
cent advancements in the field of computer science have
helped automate this challenging task. The system con-
sists of three main stages: face and lip detection, feature
extraction, and text recognition. The accuracy of the system
largely depends on the lip localization and the robustness
of the extracted features. The system has various practical
applications. In this project, we present various methods
for predicting phrases and words from images without au-
dio signals using the MIRACL-VC1 dataset. We employ an
architecture that uses a CNN pre-trained model and then
explore different ways of integrating it with a custom RNN.
We also try to improve the results by keeping the same
CNN as a basis and changing the initial RNN with LSTM
and then with GRU. Experimental results show that these
changes improve the accuracy of word recognition and var-
ious quantitative metrics.

1. Introduction

One of the most critical aspects of human life is com-
munication. It can be done via speaking, writing and many
other ways using different mediums. Lip-reading is an im-
portant aspect of human-computer interaction in noisy en-
vironments where there may be a lack of acoustic informa-
tion or where audio speech recognition may be difficult. It
can also be useful as a hearing aid for the hearing impaired.
However, lip-reading systems face several challenges due
to variations in input, such as facial features, skin colors,
speaking speed and intensity. This leads to a naturally am-
biguous result at a viseme level, where different characters
can create the same lip sequence. The context informa-
tion can alleviate such ambiguity to some extent, but many
systems are still limited to a small number of phrases and
speakers. To aid in lip-reading, more visual input data can

be collected in addition to color image sequences, such as
depth image sequences.

In this study, we used a dataset of image sequences that
each show a person speaking a word or phrase. The goal
was to classify these sequences, taking into account their
varying lengths and number of features. To capture the tem-
poral information, various methods were used, including lo-
cating the talking mouth region that comprises the motion
associated with speech.

The first method used the VGGNet pre-trained on Ima-
geNet to extract a set of features from each individual im-
age, and then passed each sequence of features through a
custom RNN with several recurrent layers to retrieve the
classification label from the final output. The second and
third methods used the same CNN as the backbone and
changed only the RNN to perform the classification. For
the second method, each sequence of features was passed
through several LSTM layers, obtaining the classification
label from the final output. For the third method, the LSTM
layers were substituted with GRU layers and the classifica-
tion was still retrieved from the final output. In addition,
we also tried to change the VGGNet with other two CNN
pre-trained again on ImageNet which are MobileNet and fi-
nally with ResNet. The latter turned out to be the best in our
particular case and allowed us to obtain much better results.

In order to make the problem tractable, we formulate
it as a classification problem of detecting what words or
phrases are being spoken out of a fixed set of known
words and phrases. Each method received a single im-
age sequence as input, and produced a single word or
phrase classification label as output. Code available at
https://github.com/davidebassan/project-vcs.

2. Related works

There have been several publications and studies on the
lip reading problem, with most of the work utilizing non-
neural network approaches. These approaches extract vari-
ous features from the images and then use machine learning

1

mailto:massimiliano.baldo@studenti.unipd.it
mailto:cristiano.panighel@studenti.unipd.it
mailto:davide.bassan.1@studenti.unipd.it
https://github.com/davidebassan/project-vcs
https://github.com/davidebassan/project-vcs


algorithms to classify what was spoken.
In the paper [3] Hidden Markov Models (HMM) were

proposed as a way to perform lip reading using only im-
age and depth information. The system consisted of two
main parts: feature extraction and speech recognition. The
first step estimated the speaker’s face pose and then detected
the mouth, followed by the use of feature descriptors to ex-
tract interesting data for the model, such as Histogram of
Oriented Gradients (HOG). The second step segmented the
speech video to look for frames corresponding to speech
expressions. The features from these frames were then fed
into the HMM for classification. The dataset is the same
as what we use, i.e MIRACL-VC1 [6]. The final results
for speaker-independent testing, where the data from one
speaker was never used during training, showed an accu-
racy of 66.7% for phrases and 59.8% for words.

In another paper [5] a four-step method was proposed for
attempting the task of lip-reading. The process is composed
of face tracking, mouth region extraction, feature compu-
tation, and classification using Support Vector Machines
(SVM). Different datasets were used, including MIRACL-
VC1, with both 3D images and depth information. A unique
aspect of their implementation was a speaker identification
system, allowing the algorithm to learn different models
based on different speakers. They achieved an accuracy of
79.2% for phrases and 63.1% for words on the MIRACL-
VC1 dataset.

A different approach was studied in [2] where a non-deep
learning method was used for lip reading. The authors used
Random Forest Manifold Alignment for training and tested
their model on various lip reading datasets, comparing their
results to other approaches.

Differently from the previous approaches, in the papers
[7], [4] it was tackled the issue of variance in sequence
length by using Long Short-Term Memory (LSTM) lay-
ers on top of a neural network. Their results were simi-
lar to those of Convolutional Neural Networks (CNNs) and
showed improvement over an SVM with HOG or Eigenlips
features [1]. Although they used a relatively large dataset
and all of their tests were speaker-dependent, with train and
test data taken from the same speaker, this suggests that
LSTMs could indeed show improvement over dedicated se-
quence classifiers.

3. Dataset
In our project, we have decided to use the MIRACL-VC1

dataset. The dataset was created from 15 people who spoke
each of them ten words and ten phrases ten times leading to
a total of 15 × 20 × 10 = 3000 instances. Each instance is
a sequence of color and depth images of 640 × 480 pixels
(Fig. 1). In our project, we have decided to use only the
color image and discard the depth information to be con-
sistent with the pre-trained CNN model. The words and

Figure 1. Instance of MIRACL-VC1.

Words Phrases
Begin Stop navigation

Choose Excuse me
Connection I am sorry
Navigation Thank you

Next Good bye
Previous I love this game

Start Nice to meet you
Stop You are welcome
Hello How are you?
Web Have a good time

Table 1. Words and phrases in MIRACL-VC1 dataset.

phrases in the dataset are listed in Table 4. The length of
sequences varies, with the minimum length being 4 images
and the maximum being 22 images for words, and 6 to 27
images for phrases.

The data was split into 9 people for training, 3 people
for validation, and 3 people for testing, resulting in 1800
instances in the training set, 600 instances in the validation
set, and 600 instances in the test set. Our objective is to
achieve the highest possible classification accuracy in the
test set, differentiating between words and phrases.

3.1. Data Pre-processing

Each figure in the dataset contains a lot of back-
ground information which is not relevant to the lip read-
ing task. To address this, we tested multiple face detec-
tion modules, including those in OpenCV such as haar-
cascade frontalface deafult and haarcascade mcs mouth,
as well as the face detector offered by dlib which is
shape predictor 68 face landmarks.dat. Although the dlib
face detector was slower than the other models, it was more
accurate in identifying the lips, which is crucial for solving
the lip reading problem. Given the small size of our dataset,
it was important to avoid wasting computation on irrelevant
parts of the image. After this step, the size of each image
was reduced to 100 × 100 x 3. This size may be further
reduced by cropping as required, depending on the method
used for training. During this data pre-processing phase, we
also tried to normalize the inputs, i.e. we tried to bring all
the values present in the images within a fixed range so as
to be able to compare them with greater precision.

2



3.2. Data Augmentation

Our dataset contains a total of 3000 instances, which
means that our dataset is relatively small compared to other
datasets used for deep learning tasks. To overcome this lim-
itation, we employ data augmentation techniques to artifi-
cially increase the size of our dataset. These techniques in-
clude random rotations, zooming in and out, random shift-
ing both horizontally and vertically from the original im-
ages. We also apply shear transformations, which involve
fixing one axis and stretching the image at a certain angle,
creating a kind of stretching of the image.

Additionally, we also flip some of the images horizon-
tally. For the new points created by the transformations that
have no value, we fill them with the nearest pixel value,
which is determined by selecting the closest pixel value and
repeating it for all empty values.

4. Method
We describe the various methods used to address the

lip reading problem using Convolutional Neural Networks
(CNNs) and Recurrent Neural Networks (RNNs). Our
model primarily relies on using CNNs as they are effective
in extracting features from images. However, one of the
challenges faced is that the dataset contains multiple im-
ages for each data instance, which means that for each data
pair (x, y), where y is the label to be predicted, x is not a
single image but a sequence of images with variable length.
To tackle this problem, one of our initial approaches was to
use LSTM layers to process the data sequences without the
need to create a single large image by concatenating the in-
dividual images, which is more complex and less intuitive.
This approach was expected to perform better as the CNN
layers would not have to infer the temporal information.

4.1. Transfer Learning

It is a way to speed up the learning process and im-
prove accuracy in creating new models by leveraging exist-
ing models. In practice, there is often not much information
to learn from the beginning of the Convolutional Network.
Most problems can be solved using models that have al-
ready been trained, such as the number of layers, activation
functions, hyperparameters, etc. Transfer learning reduces
the amount of time and effort required to train a new model
as the initial performance of the new model is higher than if
it were trained from scratch.

There are several benefits of using transfer learning:

• Higher starting point: The initial performance of the
new model is higher than it would be if it were trained
from scratch.

• Faster learning rate: The rate of improvement during
training is faster than if the model was trained from

scratch.

• Better overall performance: The final performance of
the trained model is better than it would be if it were
trained from scratch.

In our particular problem, where we have not very much
data, transfer learning can enable us to develop skillful mod-
els that we simply could not develop in the absence of trans-
fer learning. In our case, where the dataset is small, transfer
learning can help us develop models with high accuracy that
would otherwise not be possible to achieve.

4.2. Convolutional Neural Network

Looking at the architectures used mostly in trying to
solve lip reading problem, we noticed that the most com-
mon architecture used in solving this task mainly consists
of a CNN followed by some RNN layers.

4.2.1 VGG16

Our first approach involved utilizing a pre-trained VGG16
deep convolutional neural network as a feature extractor on
the MIRACL-VC1 dataset images. The VGG architecture
consists of blocks, with each block being composed of 2D
Convolution and Max Pooling layers. The weights in the
neural network are updated using the backpropagation al-
gorithm, which makes small changes to each weight in a
way that the model’s loss decreases. As the gradient keeps
flowing backward to the initial layers, the gradient becomes
smaller, causing the updates to the initial layers to be small
and leading to an increase in training time.

Figure 2. Representation of VGG-16.

For these reasons, our approach was to keep the ImageNet
learned weights frozen and use them as a feature extractor
for images. We also removed the layers related to the clas-
sification, which we performed later.

4.2.2 ResNet50

After trying to use VGGNet, we decide to switch to ResNet
which is more faster in extracting the features than VG-
GNet, this thanks to the two types of shortcut connections
introduced mainly to solve the vanishing gradient problem.

As we have done for the VGGNet, we decide to maintain
unaffected the ImageNet learned weights and subsequently
use them as a feature extractor for images.

3



Figure 3. Representation of ResNet.

4.3. Recurrent Neural Network

Our next model used Recurrent Neural Networks
(RNNs) to capture the temporal information from the data.
RNNs have the ability to maintain state information that
gets updated with every input in a sequence, making them a
suitable choice for working with sequential data.

4.3.1 RNN

Initially, we attempted to add and then train some RNN lay-
ers on top of the pre-trained CNN, but the results were not
as expected, so we decided to quickly abandon this idea and
explore other, more complex architectures such as LSTMs
and GRUs.

Figure 4. Reperesentation of a RNN cell.

4.3.2 LSTM

We implemented some Long-Short Term Memory (LSTM)
layers to address the vanishing gradient problem that we en-
countered in our simple RNN, which occurs when the gra-
dients of the weights in the network become very small and
the network has difficulty learning. LSTM networks are a
type of RNN that use a special kind of memory cell to store
and output information. These memory cells are designed
to remember information for long periods of time, and they
do this by using a set of gates that control the flow of infor-
mation into and out of the cell. The gates in an LSTM net-
work are controlled by sigmoid activation functions, which
output values between 0 and 1. The gates allow the net-
work to selectively store or forget information, depending
on the values of the inputs and the previous state of the cell.
In this model, we fed the images through the VGGNet in
our first approach and ResNet in the second one, both of

Figure 5. Reperesentation of a LSTM cell.

which pre-trained on ImageNet dataset. The features ex-
tracted by the final CNN layer were used as input by the first
LSTM layer to capture the temporal information from the
sequences. The final LSTM layer utilized a softmax classi-
fier to generate the label which was subsequently compared
with the ground truth.

Since both the CNNs were pre-trained on ImageNet, we
froze their weights and only train the LSTM layers. This es-
sentially involved doing a single forward pass through the
CNNs, and then reusing the extracted features as inputs to
the LSTM for each epoch without updating the CNNs. Fur-
ther, we employed batch normalization for quicker conver-
gence and dropout for regularization. We also used shuf-
fling with the purpose of reducing variance, and making
sure that models remain general and overfit less.

4.3.3 GRU

We implemented some Gated Recurrent Unit (GRU) layers
due to their advantages over traditional RNNs, such as not
suffering from the vanishing gradient problem and more-
over, they are simpler to implement and faster to run than
the LSTM cells. GRU networks are a type of RNN that use
a special kind of memory cell to store and output informa-
tion. They use a single update gate to control the flow of in-
formation into the memory cell rather than three gates used
in LSTMs. The update gate determines which information
derives from the previous hidden state and which current in-
put keep, moreover they use a reset gate to determine which
information to discard. This makes GRUs easier to train
and faster to run than LSTMs but they may not be as effec-
tive at storing and accessing long-term dependencies. The
procedure for implementing GRU layers was the same as
for LSTMs layers. We used the features extracted from the
VGGNet in our first approach, and from ResNet in the sec-
ond approach, as input to the first GRU layer in order to
extract temporal information from the sequence. The final
label was generated using a softmax classifier, which was
compared with the ground truth to compute the metrics.

We also employed batch normalization to achieve faster
convergence, shuffling to reduce variance and prevent over-

4



Figure 6. Reperesentation of a GRU cell.

fitting, and dropout for regularization.

5. Experimental Results
In the experiments, we trained different models with

different architectures and compared their performance in
terms of accuracy and top-5 accuracy. The Adam Optimizer
with its default learning rate was used in all the models. The
results are summarized in the following table:

The single-validation accuracies of each model can be
seen in Figures 7, 8, along with the score of the state of
the art SVM model which reaches 62.1% and 69.7% of
accuracy for words and phrases respectively. With the 10
word classes, it can be seen that the behavior of the vari-
ous models that implement RNNs is generally worse than
the model that uses machine learning techniques. Despite
this we managed to achieve similar accuracy regarding the
speak independent configuration for visual speech recogni-
tion. In the speaker independent experiment, the training
and the query data are from different speakers. We employ
the leave-one-out strategy where data from a single speaker
are used as the validation data, and the remaining speakers
are used as the training data.

Figure 7. Test accuracy on words of various models.

Figure 8. Test accuracy on phrases of various models.

The results from the best image model are shown in Ta-

ble 2. We have achieved best test accuracy of 58% and 60%
for words and phrases respectively.

Training Test
On words 84.3% 58%

On phrases 87.75% 60%
Table 2. ResNet50 + GRU results.

When comparing the accuracy of words and phrases, we
notice that phrases have a higher accuracy as compared to
words. We can attribute this to phrases being long and thus
having a more data to differentiate between them whereas
words are short and it would be more difficult to differenti-
ate between them.

From the results, we can see that the ResNet50 + GRU
model achieved the highest accuracy and top-5 accuracy,
while the VGG16 + RNN model performed the worst. It is
also noteworthy that the GRU models generally performed
better than the LSTM and RNN models.

These results suggest that the combination of ResNet50
and GRU is a promising architecture for the task, while the
choice of architecture can have a significant impact on the
performance of the model. Further experiments and tuning
can be conducted to further improve the results.

Figure 10 show the training loss with epochs. Although
loss has not yet converged after training completes, we we
already see a sort of stabilization in the accuracy (in Fig-
ures 9) and therefore we can expect that the model would
not have improved much more compared to the one we ob-
tained.

Figures 11 and 12 give the confusion matrices for the
best model evaluated on train and test set. The matrices are
quite informative in the kind of errors made. For instance,
the word “Start” and the word “Stop” are getting mixed up
in the test set. This is because the test set speaker’s mouth

Model Test Accuracy Top-5 Accuracy
VGG16 + RNN 10% 50%

VGG16 + LSTM 44% 88%
VGG16 + GRU 48% 91%

MobileNet + GRU 17% 71%
ResNet50 + GRU 58% 96%

Table 3. Words result for MIRACL-VC1 dataset.

Model Test Accuracy Top-5 Accuracy
VGG16 + RNN 10% 49%

VGG16 + LSTM 56% 95%
VGG16 + GRU 53% 87%

MobileNet + GRU 26.6% 82%
ResNet50 + GRU 60% 92%

Table 4. Phrases result for MIRACL-VC1 dataset.

5



Figure 9. Accuracies over epochs.

Figure 10. Training loss over epochs.

movement for both of them is quite similar, which is not
true for the speaker in validation set. This reveals another

Figure 11. Confusion matrix of words on train set.

Figure 12. Confusion matrix of words on test set.

problem, that is difference in accents. People from different
parts of the world have different ways of pronouncing the
same word. This creates problems for a model that uses lip

orientation to figure out the spoken word.
Similar problems can be individuated also considering

the phrases inside the Miracl-VC1 dataset as shown in the
confusion matrices in Figures 13 and 14. As we can see
the sentence ”Have a good time” is completely misclassified
and identified as ”Excuse me” and ”I love this game”.

Figure 13. Confusion matrix of phrases on train set.

Figure 14. Confusion matrix of phrases on test set.

We also experimented with different parameter update
strategies. We noticed that SGD itself was incapable of
training the model in reasonable time. It gave no signifi-
cant improvements even after 20 epochs. In comparison,
Adam showed improvements right from the first epoch.

6. Conclusion
In this report, we have presented our work on lip read-

ing, which is the task of transcribing speech from video se-
quences of a speaker’s mouth.

our experiments showed that using pre-trained CNNs as
feature extractors on the lip reading task using RNN mod-
els that capture the temporal information from the video
sequences is a good starting point. Generally the perfor-
mances are not the best also because our data augmentation
did not provide any independent data, so this could not have
provided a significant boost.

In future work, we aim to further improve the perfor-
mance by using more advanced models that better capture
the complex relationships between the visual information
from the lips and the corresponding speech.

6



References
[1] C. Bregler and Y. Konig. Eigenlips for robust speech recog-

nition. In Proceedings of ICASSP ’94. IEEE International
Conference on Acoustics, Speech and Signal Processing, vol-
ume ii, pages II/669–II/672 vol.2, 1994.

[2] Yuru Pei, Tae-Kyun Kim, and Hongbin Zha. Unsupervised
random forest manifold alignment for lipreading. In 2013
IEEE International Conference on Computer Vision, pages
129–136, 2013.

[3] Ahmed Rekik, Achraf Ben-Hamadou, and Walid Mahdi. A
new visual speech recognition approach for RGB-D cameras.
In Image Analysis and Recognition - 11th International Con-
ference, ICIAR 2014, Vilamoura, Portugal, October 22-24,
2014, pages 21–28, 2014.

[4] Ahmed Rekik, Achraf Ben-Hamadou, and Walid Mahdi. Hu-
man machine interaction via visual speech spotting. In Se-
bastiano Battiato, Jacques Blanc-Talon, Giovanni Gallo, Wil-
fried Philips, Dan Popescu, and Paul Scheunders, editors, Ad-
vanced Concepts for Intelligent Vision Systems, pages 566–
574, Cham, 2015. Springer International Publishing.

[5] Ahmed Rekik, Achraf Ben-Hamadou, and Walid Mahdi. Uni-
fied system for visual speech recognition and speaker identifi-
cation. In Sebastiano Battiato, Jacques Blanc-Talon, Giovanni
Gallo, Wilfried Philips, Dan Popescu, and Paul Scheunders,
editors, Advanced Concepts for Intelligent Vision Systems,
pages 381–390, Cham, 2015. Springer International Publish-
ing.

[6] Ahmed Rekik, Achraf Ben-Hamadou, and Walid Mahdi. An
adaptive approach for lip-reading using image and depth data.
Multimedia Tools and Applications, 75(14):8609–8636, 2016.

[7] Michael Wand, Jan Koutnı́k, and Jürgen Schmidhuber.
Lipreading with long short-term memory, 2016.

7


